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Abstract Linear Algebra Section 1A

1 The Complex Field C

Definition 1.1. The Complex Field: A complex number is an ordered pair (𝑎, 𝑏), where
𝑎, 𝑏 ∈ R, and in which they are written as 𝑎 + 𝑏𝑖, where 𝑖 =

√
−1. The set of all complex

numbers is denoted by C:
C = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ R}.

Definition 1.2. Arithmetic on C:
Addition on C is defined by

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖. (1)

Multiplication on C is defined by

(𝑎 + 𝑏𝑖) (𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖. (2)
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Abstract Linear Algebra Section 1A

1. Show that 𝛼 + 𝛽 = 𝛽 + 𝛼 for all 𝛼, 𝛽 ∈ C.

Soln: Direct Proof: Let 𝛼, 𝛽 ∈ C.

𝛼 = 𝑎 + 𝑏𝑖 and 𝛽 = 𝑐 + 𝑑𝑖,

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R. We recall that addition on C (1.2) is defined as:

𝛼 + 𝛽 = (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖)
= (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖.

𝛽 + 𝛼 = (𝑐 + 𝑑𝑖) + (𝑎 + 𝑏𝑖),
= (𝑐 + 𝑎) + (𝑑 + 𝑏)𝑖.

Since 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, and addition is commutative in R, we can write

(𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖 = (𝑐 + 𝑎) + (𝑑 + 𝑏)𝑖,

and thus, 𝛼 + 𝛽 = 𝛽 + 𝛼.
□

2



Abstract Linear Algebra Section 1A

2. Show that for every 𝛼 ∈ C, there exists a unique 𝛽 ∈ C such that 𝛼 + 𝛽 = 0.

Soln: Proof By Contradiction: Assume there exists two distinct values 𝛽1, 𝛽2 ∈ C
such that

𝛼 + 𝛽1 = 0 and 𝛼 + 𝛽2 = 0.

We can subtract the equations from each other,

(𝛼 + 𝛽1) − (𝛼 + 𝛽2) = 0 − 0,

which when simplifying, yields
𝛽1 − 𝛽2 = 0.

This leads to a contradiction, since it implies that 𝛽1 = 𝛽2. Therefore, the 𝛽 value such
that ∀𝛼 ∈ C : 𝛼 + 𝛽 = 0 must be unique.
□

3. Show that for every 𝛼 ∈ C with 𝛼 ≠ 0, there exists a unique 𝛽 ∈ C such that 𝛼𝛽 = 1.

Soln: Proof By Contradiction: Assume there exists two distinct values 𝛽1, 𝛽2 ∈ C
such that

𝛼𝛽1 = 1 and 𝛼𝛽2 = 1.

Then, subtract the two equations

𝛼𝛽1 − 𝛼𝛽2 = 1 − 1
𝛼(𝛽1 − 𝛽2) = 0.

Since we have 𝛼 ≠ 0, we can divide both sides by 𝛼, yielding

𝛽1 − 𝛽2 = 0.

This implies 𝛽1 = 𝛽2, which gives rise to a contradiction. Therefore, the 𝛽 value such
that ∀𝛼 ∈ C : 𝛼𝛽 = 1 must be unique.
□
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Abstract Linear Algebra Section 1A

4. Show that
−1 +

√
3𝑖

2
is a cube root of 1 (meaning that its cube equals 1).

Soln: Direct Proof: Let 𝑧 = −1+
√

3𝑖
2 . From 1.2, we know that multiplication on C is

defined as
𝛼𝛽 = (𝑎 + 𝑏𝑖) (𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖;

where 𝛼 = 𝑎 + 𝑏𝑖, 𝛽 = 𝑐 + 𝑑𝑖, and 𝑎, 𝑏, 𝑐, 𝑑 ∈ R. Note that, when multiplying 𝑧 by
itself, 𝑎 = 𝑐 and 𝑑 = 𝑏. For 𝑧, we have 𝑎 = 𝑐 = −1

2 , and 𝑏 = 𝑑 =
√

3
2 . We’ll start by

computing 𝑧2, and then compute (𝑧2) (𝑧).

𝑧2 = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖

=
©­«
(
−1

2

)2
−

(√
3

2

)2ª®¬ +
((
−1

2 ·
√

3
2

)
+

(√
3

2 · −1
2

))
𝑖

=

(
1
4 − 3

4

)
+

(
−
√

3
4 −

√
3

4

)
𝑖

= −1
2 −

√
3𝑖
2

=
−1 −

√
3𝑖

2

Now we take 𝑧2 from above and compute the product 𝑧3 = 𝑧2𝑧, with care to use the
right 𝑎, 𝑏, 𝑐 and 𝑑 values:

𝑧3 =

((
−1

2

)2
−

(
−
√

3
2 ·

√
3

2

))
+

((
−1

2 ·
√

3
2

)
+

(
−
√

3
2 · −1

2

))
=

(
1
4 + 3

4

)
+

(
−
√

3
4 +

√
3

4

)
= 1 + 0
= 1.

□
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5. Find two distinct square roots of 𝑖.

Soln: TODO:

6. Explain why there does not exist 𝜆 ∈ C such that

𝜆(2 − 3𝑖, 5 + 4𝑖,−6 + 7𝑖) = (12 − 5𝑖, 7 + 22𝑖,−32 − 9𝑖).

Soln: Proof by Contradiction: Assume ∃𝜆 ∈ C such that

𝜆
©­«

2 − 3𝑖
5 + 4𝑖
−6 + 7𝑖

ª®¬ =
©­«

12 − 5𝑖
7 + 22𝑖
−32 − 9𝑖

ª®¬ .
If such a 𝜆 exists, then it must satisfy the following system of complex equations:

𝜆(2 − 3𝑖) = 12 − 5𝑖
𝜆(5 + 4𝑖) = 7 + 22𝑖
𝜆(−6 + 7𝑖) = −32 − 9𝑖

We can solve for 𝜆 from the first equation,

𝜆(2 − 3𝑖) = 12 − 5𝑖

𝜆 =
12 − 5𝑖
2 − 3𝑖

𝜆 = 3 + 2𝑖,

and check if it satisfies the second equation:

(3 + 2𝑖) (5 + 4𝑖) = 15 + 12𝑖 + 10𝑖 − 8
= 7 + 22𝑖.

Thus, this 𝜆 satisfies the first two equations. Lastly, we check the third:

(3 + 2𝑖) (−6 + 7𝑖) = −18 + 21𝑖 − 12𝑖 − 14
= −32 + 9𝑖 ≠ −32 − 9𝑖

and arrive at a contradiction. We conclude that no single 𝜆 ∈ C can satisfy all three
equations simultaneously.
□
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2 Vector Spaces
Definition 2.1. A vector space 𝑉 over a field 𝐹 is a set along with an addition and a scalar
multiplication

+ : 𝑉 ×𝑉 → 𝑉 and · : 𝐹 ×𝑉 → 𝑉

such that the following properties hold:

• Commutativity: 𝑢 + 𝑣 = 𝑣 + 𝑢 for all 𝑢, 𝑣 ∈ 𝑉 .

• Associativity: (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) and 𝑎(𝑏𝑣) = (𝑎𝑏)𝑣 for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and all
𝑎, 𝑏 ∈ 𝐹.

• Additive Inverse: For every 𝑣 ∈ 𝑉 , there exists −𝑣 ∈ 𝑉 such that 𝑣 + (−𝑣) = 0.

• Additive Identity: There exists 0 ∈ 𝑉 such that 𝑣 + 0 = 𝑣 for all 𝑣 ∈ 𝑉 .

• Multiplicative Identity: There exists 1 ∈ 𝑉 such that 1𝑣 = 𝑣 for all 𝑣 ∈ 𝑉 .

• Distributive Properties: 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣 and (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣 for all 𝑎, 𝑏 ∈ 𝐹 and
all 𝑢, 𝑣 ∈ 𝑉 .

Theorem 2.2. Any subspace of a vector space is a vector space.
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Abstract Linear Algebra Section 1B

1. Prove that −(−𝑣) = 𝑣 for every 𝑣 ∈ 𝑉 (where 𝑉 is a vector space).

Soln: By definition of a vector space (2.1), the additive inverse −𝑣 of 𝑣 ∈ 𝑉 satisfies:

𝑣 + (−𝑣) = 0. (3)

Considering the element −(−𝑣), which is the additive inverse of −𝑣, and by the prop-
erties of the additive inverse, we have:

(−𝑣) + (−(−𝑣)) = 0. (4)

From (Eq. 3), we know that 𝑣 + (−𝑣) = 0. Let’s add 𝑣 to both sides of (Eq. 4):

𝑣 + ((−𝑣) + (−(−𝑣))) = 𝑣 + 0.

By the property of the additive identity 𝑣 + 0 = 𝑣. Since addition on 𝑉 is associative,
we can rewrite the left-hand side:

(𝑣 + (−𝑣)) + (−(−𝑣)) = 𝑣.

From 𝑣 + (−𝑣) = 0, we get:

0 + (−(−𝑣)) = 𝑣

−(−𝑣) = 𝑣.

Thus, for every 𝑣 ∈ 𝑉 , we have −(−𝑣) = 𝑣.
□
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Abstract Linear Algebra Section 1B

2. Suppose 𝑎 ∈ 𝐹, 𝑣 ∈ 𝑉 , and 𝑎𝑣 = 0. Prove that 𝑎 = 0 or 𝑣 = 0.

Soln: If 𝑎 = 0, the equation 𝑎𝑣 = 0 is trivially true for any 𝑣 ∈ 𝑉 . Assume 𝑎 ≠ 0
and that 𝑎𝑣 = 0 for some 𝑣 ∈ 𝑉 . Since 𝑎 ∈ 𝐹 and 𝑎 ≠ 0, the field 𝐹 guarantees the
existing of an inverse 𝑎−1 such that 𝑎−1𝑎 = 1. Using this, we multiply both sides of the
equation 𝑎𝑣 = 0 by 𝑎−1:

𝑎−1(𝑎𝑣) = 𝑎−1 · 0.

By the associativity of scalar multiplication on 𝑉 , we have:

(𝑎−1𝑎)𝑣 = 0,

and since 𝑎−1𝑎 = 1, this simplifies to:

1 · 𝑣 = 0.

The scalar 1 is the multiplicative identity in the field 𝐹, so 1 · 𝑣 = 𝑣. Therefore, the
equation becomes:

𝑣 = 0.

Thus, if 𝑎 ≠ 0, we have shown that 𝑣 = 0. Therefore, either 𝑎 = 0 or 𝑣 = 0.
□
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3. Suppose 𝑣, 𝑤 ∈ 𝑉 . Explain why there exists a unique 𝑥 ∈ 𝑉 such that 𝑣 + 3𝑥 = 𝑤.

Soln: Existence: To prove existence of 𝑥, we can use the axioms of vector spaces (2.1),
particularly, the properties of scalar multiplication and additive inverses. Subtract 𝑣
from both sides of the equation:

(𝑣 + 3𝑥) − 𝑣 = 𝑤 − 𝑣

3𝑥 = 𝑤 − 𝑣. (5)

Since 3 ∈ 𝐹 is a non-zero scalar and 𝐹, the field over which the vector space is defined,
has multiplicative inverses for non-zero elements, there exists 1

3 ∈ 𝐹:

𝑥 =
1
3 (𝑤 − 𝑣).

Thus, we have proven the existence of an 𝑥 ∈ 𝑉 that satisfies 𝑣 + 3𝑥 = 𝑤.
Uniqueness: Suppose there are two values 𝑥1, 𝑥2 ∈ 𝑉 such that they satisfy

𝑣 + 3𝑥1 = 𝑤 and 𝑣 + 3𝑥2 = 𝑤.

Combining the two equations, we have:

(𝑣 + 3𝑥1) − (𝑣 + 3𝑥2) = 𝑤 − 𝑤

3𝑥1 − 3𝑥2 = 0. (6)

We can factor out the scalar 3,
3(𝑥1 − 𝑥2) = 0,

which implies 𝑥1 − 𝑥2 = 0, and in turn, 𝑥1 = 𝑥2. Therefore 𝑥 is unique.
□
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4. The empty set is not a vector space. The empty set fails to satisfy only one of the
requirements listed in the definition of a vector space (1.20). Which one?

Soln: The additive identity axiom in (1.20) begins ”there exists an element 0 ∈ 𝑉 ...”.
However, the empty set ∅ does not contain any elements. Therefore it fails to satisfy
this axiom.
□

5. Show that in the definition of a vector space (1.20), the additive inverse condition can be
replaced with the condition that

∀𝑣 ∈ 𝑉 : 0𝑣 = 0.
The phrase a ”condition can be replaced” in a definition means that the collection
of objects satisfying the definition is unchanged if the original condition is
replaced with the new condition.

Soln: Direct Proof: Let 𝑣 ∈ 𝑉 . Then

0 = 0𝑣
= (1 + (−1))𝑣
= 1𝑣 + (−1)𝑣
= 𝑣 + (−1)𝑣.

This (−1)𝑣 is an additive inverse of 𝑣. Hence the additive inverse condition is indirectly
satisfied by the condition we replaced it with.
□

6. Suppose 𝑆 is a nonempty set. Let 𝑉𝑆 denote the set of functions from 𝑆 to 𝑉 . Define a
natural addition and scalar multiplication on 𝑉𝑆, and show that 𝑉𝑆 is a vector space with
these definitions.

Soln: For 𝑓 , 𝑔 ∈ 𝑉𝑆, 𝑥 ∈ 𝑆, and 𝜆 ∈ 𝐹, let 𝑓 + 𝑔 and 𝜆 𝑓 be the operations defined by

( 𝑓 + 𝑔) (𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) and (𝜆 𝑓 ) (𝑥) = 𝜆 𝑓 (𝑥).

the additive identity of 𝑉𝑆 is the function from 𝑆 to 𝑉 that is identically 0, and the
additive inverse of 𝑓 ∈ 𝑉𝑆 is the function from 𝑆 to 𝑉 such that 𝑥 ↦→ − 𝑓 (𝑥).
□
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3 Subspaces
Definition 3.1. Conditions of a Subspace A subset 𝑈 ⊂ 𝑉 is a subspace of 𝑉 if, and only if, 𝑈
satisfies the following properties.

• additive identity
0 ∈ 𝑈.

• closed under addition
𝑢, 𝑤 ∈ 𝑈 =⇒ 𝑢 + 𝑤 ∈ 𝑊.

• closed under scalar multiplication

𝑎 ∈ 𝐹 and 𝑢 ∈ 𝑈 =⇒ 𝑎𝑢 ∈ 𝑈.

11
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1. For each of the following subsets of 𝐹3, determine whether or not they are a subspace of
𝐹3.
(a) 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 0}
(b) 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 4}
(c) 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1𝑥2𝑥3 = 0}
(d) 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1 = 5𝑥3}

Soln: We will check each 𝑊 to see if they satisfy the criteria for a subspace as defined
in 3.1.
(a) 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 0}.

Additive Identity: 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 0} contains the
additive identity, since (0, 0, 0) satisfies 𝑥1 + 2𝑥2 + 3𝑥3 = 0.

Closed Under Addition: Suppose 𝑢 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑊 and 𝑣 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑊 ,
where each satisfy 𝑥1 + 2𝑥2 + 3𝑥3 = 0 and 𝑦1 + 2𝑦2 + 3𝑦3 = 0. Then:

(𝑥1 + 𝑦1) + 2(𝑥2 + 𝑦2) + 3(𝑥3 + 𝑦3) = (𝑥1 + 2𝑥2 + 3𝑥3) + (𝑦1 + 2𝑦2 + 3𝑦3) = 0.

Hence, the subset is closed under addition.

Closed Under Scalar Mult.: Let 𝑢 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑊 and 𝑐 ∈ 𝐹. Then:

𝑐(𝑥1 + 2𝑥2 + 3𝑥3) = 𝑐(0) = 0.

Therefore, 𝑐𝑢 ∈ 𝑊 . We conclude that this 𝑊 is a subspace of 𝐹3.
□

(b) 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 4}.
Additive Identity: The subset 𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐹3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 4}
does not contain the additive identity, since the zero vector does not satisfy
𝑥1 + 2𝑥2 + 3𝑥3 = 4:

0 + 2(0) + 3(0) ≠ 4.

Therefore, the subset is not a subspace of 𝐹3.
□

(c) TODO

(d) TODO
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2. Show that the set of differentiable real-valued functions 𝑓 on the interval (−4, 4) such that
𝑓 ′(−1) = 3 𝑓 (2) is a subspace of R(−4,4) .

Soln: Let 𝑆 be the set of differentiable real-valued functions on the interval (−4, 4)
such that 𝑓 ′(−1) = 3 𝑓 (2). We will check the subspace criteria (3.1) one-by-one.

Additive Identity: For the zero function, 𝑓 (𝑥) = 0, we have 𝑓 ′(𝑥) = 0 for all 𝑥,
including 𝑓 ′(-1)=0, and 𝑓 (2) = 0. Thus, 𝑓 ′(−1) = 0 = 3 𝑓 (2), so the zero function
satisfies the condition 𝑓 ′(−1) = 3 𝑓 (2), and therefore, 𝑆 contains the zero function;
𝑓 (𝑥) = 0 ∈ 𝑆.

Closed Under Addition: Let 𝑓 , 𝑔 ∈ 𝑆, e.g., 𝑓 ′(−1) = 3 𝑓 (2) and 𝑔′(−1) = 3𝑔(2). We
need to show that ( 𝑓 + 𝑔) ∈ 𝑆, meaning ( 𝑓 + 𝑔)′(−1) = 3( 𝑓 + 𝑔) (2).
By the linearity of differentiation, we have:

( 𝑓 + 𝑔)′(−1) = 𝑓 ′(−1) + 𝑔′(−1)

and
( 𝑓 + 𝑔) (2) = 𝑓 (2) + 𝑔(2).

Using the fact that 𝑓 ′(−1) = 3 𝑓 (2) and 𝑔′(−1) = 3𝑔(2), we get:

( 𝑓 + 𝑔)′(−1) = 𝑓 ′(−1) + 𝑔′(−1) = 3 𝑓 (2) + 3𝑔(2) = 3( 𝑓 (2) + 𝑔(2)) = 3( 𝑓 + 𝑔) (2).

Thus, ( 𝑓 + 𝑔)′(−1) = 3( 𝑓 + 𝑔) (2), which shows that ( 𝑓 + 𝑔) ∈ 𝑆.

Closed Under Scalar Mult.: Let 𝑓 ∈ 𝑆 and 𝑐 ∈ 𝑅. We want to show that (𝑐 𝑓 ) ∈
𝑆, meaning (𝑐 𝑓 )′(−1) = 3(𝑐 𝑓 ) (2). By the linearity of differentiation and scalar
multiplication, we have:

(𝑐 𝑓 )′−1 = 𝑐 𝑓 ′(−1)
and

(𝑐 𝑓 ) (2)𝑐 𝑓 (2).
Using the face that 𝑓 ′(−1) = 3 𝑓 (2), we get:

(𝑐 𝑓 )′(−1) = 𝑐 𝑓 ′(−1) = 𝑐 · 3 𝑓 (2) = 3(𝑐 𝑓 (2)).

Thus, (𝑐 𝑓 )′(−1) = 3(𝑐 𝑓 ) (2), which shows that 𝑐 𝑓 ∈ 𝑆.

The set 𝑆 of differentiable real-valued functions 𝑓 on the interval (−4, 4), with 𝑓 ′(−1) =
3 𝑓 (2), satisfies all the criteria of a subspace of R(−4,4) .
□
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3. (a) Is {(𝑎, 𝑏, 𝑐) ∈ R3 : 𝑎3 = 𝑏3} a subspace of R3?
(b) Is {(𝑎, 𝑏, 𝑐) ∈ C3 : 𝑎3 = 𝑏3} a subspace of C3?

Soln:
(a) Let 𝑆 = {(𝑎, 𝑏, 𝑐) ∈ R3 : 𝑎3 = 𝑏3}. For 𝑆 to be a subspace of R3 it must satisfy

the properties listed in 3.1.
Additive Identity: The additive identity (zero function) (0, 0, 0) exists in 𝑆,
because it satisfies the equation

𝑎3 = 𝑏3 =⇒ 03 = 03.

Closed Under Addition: Let 𝛼 = (𝑎1, 𝑏1, 𝑐1) ∈ 𝑆 and 𝛽 = (𝑎2, 𝑏2, 𝑐2) ∈ 𝑆.
These vectors satisfy the condition that:

𝑎3
1 = 𝑏3

1 and 𝑎3
2 = 𝑏3

2. (7)

The definition of addition on 𝑆 gives us

𝛼 + 𝛽 =
©­«
𝑎1 + 𝑎2
𝑏1 + 𝑏2
𝑐1 + 𝑐2

ª®¬ .
The condition for 𝛼 + 𝛽 ∈ 𝑆 is:

(𝑎1 + 𝑎2)3 = (𝑏1 + 𝑏2)3. (8)

Now, let’s check whether the equation (𝑎1 + 𝑎2)3 = (𝑏1 + 𝑏2)3 holds in general.
Expanding both sides using the binomial theorem:

(𝑎1 + 𝑎2)3 = 𝑎3
1 + 3𝑎2

1𝑎2 + 3𝑎1𝑎
2
2 + 𝑎3

2,

and
(𝑏1 + 𝑏2)3 = 𝑏3

1 + 3𝑏2
1𝑏2 + 3𝑏1𝑏

2
2 + 𝑏3

2.

For the sum 𝛼 + 𝛽 to satisfy (8), we need:

𝑎3
1 + 3𝑎2

1𝑎2 + 3𝑎1𝑎
2
2 + 𝑎3

2 = 𝑏3
1 + 3𝑏2

1𝑏2 + 3𝑏1𝑏
2
2 + 𝑏3

2.

However, we only know that 𝑎3
1 = 𝑏3

1 and 𝑎3
2 = 𝑏3

2; we know nothing about the
remaining terms. Thus in general, and ignoring special cases where the other
terms are 0,

(𝑎1 + 𝑎2)3 ≠ (𝑏1 + 𝑏2)3.

Since (𝑎1 + 𝑎2)3 ≠ (𝑏1 + 𝑏2)3 in general, the sum of two vectors in 𝑆 does not
necessarily belong to 𝑆. Thus, 𝑆 is not closed under addition, and 𝑆 is not a
subspace of R3.
□

14
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4. Prove or give a counterexample: If 𝑈 is a nonempty subset of R2 such that 𝑈 is closed
under addition and under taking additive inverses (meaning −𝑢 ∈ 𝑈 whenever 𝑢 ∈ 𝑈), then
𝑈 is a subspace of R2.

Soln: Let 𝑈 be a nonempty subset of R2 such that it satisfies the properties listed
above. The missing property we need to show for 𝑈 is being closed under scalar
multiplication. Consider 𝑐 = −1 ∈ R. If 𝑢 ∈ 𝑈, then −𝑢 ∈ 𝑈 by the assumption that
𝑈 is closed under taking additive inverses. So scalar multiplication by −1 is already
implied by this property.
However, consider the example:

𝑈 ⊂ R2 = {(𝑥, 𝑦) ∈ R2 : 𝑥, 𝑦 ∈ Z}.

This 𝑈 is not closed under scalar multiplication. For example, if 𝑢 = (1, 0) ∈ 𝑈 and
we multiply by a scalar 𝑟 = 1

2 ∈ R, we get:

1
2 (1, 0) =

(
1
2 , 0

)
,

which is not in 𝑈, since 1
2 ∉ Z.

Thus, 𝑈 is not a subspace of R2, even though it is closed under addition and ad-
ditive inverses, because it fails to satisfy the property of being closed under scalar
multiplication.
□

5. Give an example of a nonempty subset 𝑈 of R2 such that 𝑈 is closed under scalar multi-
plication, but 𝑈 is not a subspace of R2.

6. A function 𝑓 : R → R is called periodic if there exists a positive number 𝑝 such that
𝑓 (𝑥) = 𝑓 (𝑥 + 𝑝) for all 𝑥 ∈ R. Is the set of periodic functions from R to R a subspace of
RR? Explain.

7. Suppose 𝑉1 and 𝑉2 are subspaces of 𝑉 . Prove that the intersection 𝑉1 ∩𝑉2 is a subspace of
𝑉 .

8. Prove that the intersection of every collection of subspaces of 𝑉 is a subspace of 𝑉 .

9. Prove that the union of two subspaces of 𝑉 is a subspace of 𝑉 if, and only if, one of the
subspaces is contained in the other

10. Suppose

𝑈 = {(𝑥,−𝑥, 2𝑥) ∈ 𝐹3 : 𝑥 ∈ 𝐹} and 𝑊 = {(𝑥, 𝑥, 2𝑥) ∈ 𝐹3 : 𝑥 ∈ 𝐹}.

15
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Describe 𝑈 +𝑊 using symbols, and give a description of 𝑈 +𝑊 that uses no symbols.

11. Suppose 𝑈 is a subspace of 𝑉 . What is 𝑈 +𝑈?

12. Prove or give a counterexample: If 𝑉1, 𝑉2,𝑈 are subspaces of 𝑉 such that

𝑉1 +𝑈 = 𝑉2 +𝑈, (9)

then 𝑉1 = 𝑉2.

13. Suppose
𝑈 = {(𝑥, 𝑥, 𝑦, 𝑦) ∈ 𝐹4 : 𝑥, 𝑦 ∈ 𝐹}. (10)

Find a subspace 𝑊 of 𝐹4 such that 𝐹4 = 𝑈 ⊕𝑊 . Where ⊕ denotes a direct sum.

14. A function 𝑓 : R → R is called even if

𝑓 (−𝑥) = 𝑓 (𝑥) (11)

for all 𝑥 ∈ R. A function 𝑓 : R → R is called odd if

𝑓 (−𝑥) = − 𝑓 (𝑥) (12)

for all 𝑥 ∈ R. Let 𝑉𝑒 denote the set of real-valued even functions on R and let 𝑉𝑜 denote
the set of real-valued odd functions on R. Show that RR = 𝑉𝑒 ⊕ 𝑉𝑜.
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