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1 The Complex Field C

Definition 1.1. The Complex Field: A complex number is an ordered pair (a,b), where
a,b € R, and in which they are written as a + bi, where i = Y=1. The set of all complex
numbers is denoted by C:

C={a+bi:a,beR}.

Definition 1.2. Arithmetic on C:
Addition on C is defined by

(a+bi)+(c+di)=(a+c)+ (b+d)i. (1)
Multiplication on C is defined by

(a+bi)(c +di) = (ac — bd) + (ad + bc)i. (2)
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1. Show thata + 8 =B+ a forall o, € C.

Soln: Direct Proof: Let a, 8 € C.
a=a+bi and B=c+di,
where a, b, ¢, d € R. We recall that addition on C (1.2) is defined as:

a+ B = (a+bi)+ (c+di
=(a+c)+ (b+d).
B+a = (c+di)+ (a+ bi),
=(c+a)+(d+Db).

Since a, b, ¢, d € R, and addition is commutative in R, we can write
(a+c)+(b+d)i=(c+a)+(d+Db)i,

and thus, a + B = + .

O
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2. Show that for every a € C, there exists a unique 8 € C such that @ + 5 = 0.

Soln: Proof By Contradiction: Assume there exists two distinct values 1,82 € C
such that
a+p1=0 and a+ By =0.

We can subtract the equations from each other,
(@+p1) - (@+p2) =0-0,
which when simplifying, yields
B1—=pB2=0.

This leads to a contradiction, since it implies that 81 = 2. Therefore, the 8 value such
that Vo € C : @ + # = 0 must be unique.

O

3. Show that for every @ € C with « # 0, there exists a unique S € C such that a8 = 1.

Soln: Proof By Contradiction: Assume there exists two distinct values 1,82 € C
such that
af;=1 and af2=1.

Then, subtract the two equations

afr—afr=1-1
a(pr —B2) =0.

Since we have a # 0, we can divide both sides by «, yielding
B1—=pB2=0.

This implies 81 = B2, which gives rise to a contradiction. Therefore, the 8 value such
that Va € C : @ = 1 must be unique.

O




Abstract Linear Algebra

4. Show that

~1+V3i
2
is a cube root of 1 (meaning that its cube equals 1).

Section 1A

Soln: Direct Proof: Let 7 = _1+2‘/§i. From 1.2, we know that multiplication on C is
defined as

af = (a+bi)(c+di) = (ac — bd) + (ad + bc)i,;

where @ = a + bi, = ¢ + di, and a,b,c,d € R. Note that, when multiplying z by
itself, a = cand d = b. For z, we have a = ¢ = —%, and b =d = g We’ll start by
computing z2, and then compute (z%)(z).

22 = (ac - bd) + (ad + be)i
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Now we take z> from above and compute the product z? = z2z, with care to use the
right a, b, ¢ and d values:

S 2
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5. Find two distinct square roots of i.

Soln: TODO:

6. Explain why there does not exist 4 € C such that
A2 =30,5+4i,-6+7i) = (12 - 5i, 7+ 22i, =32 - 9i).

Soln: Proof by Contradiction: Assume 31 € C such that

2-3i 12 - 5i
Al 5+4i | =] 7+22i
-6+ 7i -32-9i

If such a A exists, then it must satisfy the following system of complex equations:

A2-3i) =12-5i
ABG+4i) =T7+22
A(=6+T7i) =-32-29i

We can solve for A from the first equation,

A2 -3i) =12 - 5i

1= 12—?1'
2—30
A=3+2i,

and check if it satisfies the second equation:

(3+20)(5+4i) =15+ 12i + 10i — 8
=T7+22i.

Thus, this A satisfies the first two equations. Lastly, we check the third:

(B+20)(—6+T7i)=-18+21i—12i — 14
=-324+9i #-32-9i
and arrive at a contradiction. We conclude that no single 4 € C can satisfy all three
equations simultaneously.

O
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2 Vector Spaces

Definition 2.1. A vector space V over a field F is a set along with an addition and a scalar
multiplication
+: VXV >V and -:FXV >V

such that the following properties hold:
o Commutativity: u+v =v+u forallu,v €V.

» Associativity: (u+v)+w =u+ (v+w) and a(bv) = (ab)v for all u,v,w € V and all
a,befF.

 Additive Inverse: For every v €V, there exists —v € V such that v + (-v) = (.
» Additive Identity: There exists 0 € V such thatv+0=v forallv € V.
* Multiplicative Identity: There exists 1 € V such that 1v =v forallv € V.

* Distributive Properties: a(u+v) = au+av and (a+b)v = av+bv forall a,b € F and
allu,v € V.

Theorem 2.2. Any subspace of a vector space is a vector space.
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1. Prove that —(—v) = v for every v € V (where V is a vector space).

Soln: By definition of a vector space (2.1), the additive inverse —v of v € V satisfies:
v+ (-v) =0. (3)

Considering the element —(—v), which is the additive inverse of —v, and by the prop-
erties of the additive inverse, we have:

(=v) + (=(-v)) = 0. 4)
From (Eq. 3), we know that v + (—v) = 0. Let’s add v to both sides of (Eq. 4):
v+ ((=v) + (=(-v))) =v+0.

By the property of the additive identity v + 0 = v. Since addition on V is associative,
we can rewrite the left-hand side:

v+ (=v) +(=(=v)) =v.
From v + (-v) = 0, we get:

0+ (=(-v))=v

—(=v) =v.

Thus, for every v € V, we have —(—v) = v.

O
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2. Suppose a € F,v € V,and av = 0. Prove thata =0 orv = 0.

Soln: If a = 0, the equation av = 0 is trivially true for any v € V. Assume a # 0
and that av = 0 for some v € V. Since a € F and a # 0, the field F' guarantees the
existing of an inverse a~! such that a~'a = 1. Using this, we multiply both sides of the
equation av = 0 by a~1:

al(av)=al-0.

By the associativity of scalar multiplication on V, we have:
(ata)y =0,
and since a'a = 1, this simplifies to:
1-v=0.

The scalar 1 is the multiplicative identity in the field F, so 1 - v = v. Therefore, the
equation becomes:

v =0.
Thus, if a # 0, we have shown that v = 0. Therefore, eithera = 0 or v = 0.

O
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3. Suppose v, w € V. Explain why there exists a unique x € V such that v + 3x = w.

Soln: Existence: To prove existence of x, we can use the axioms of vector spaces (2.1),
particularly, the properties of scalar multiplication and additive inverses. Subtract v
from both sides of the equation:

(v+3x)—v=w-v
3x=w—v. 5

Since 3 € F is a non-zero scalar and F, the field over which the vector space is defined,
has multiplicative inverses for non-zero elements, there exists % e F:

X = g(w—v).

Thus, we have proven the existence of an x € V that satisfies v + 3x = w.

Uniqueness: Suppose there are two values x1, xo € V such that they satisfy
v+3x1=w and v+3x9=w.
Combining the two equations, we have:

(v+3x)—(v+3x9)=w-—w
3x1 — 3x2 = 0. (6)
We can factor out the scalar 3,
3(x1 — x2) =0,
which implies x; — x2 = 0, and in turn, x; = x9. Therefore x is unique.

O
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4. The empty set is not a vector space. The empty set fails to satisfy only one of the
requirements listed in the definition of a vector space (1.20). Which one?

Soln: The additive identity axiom in (1.20) begins “there exists an element 0 € V...”.
However, the empty set () does not contain any elements. Therefore it fails to satisfy
this axiom.

O

5. Show that in the definition of a vector space (1.20), the additive inverse condition can be
replaced with the condition that

VveV:0v=0.

The phrase a ”condition can be replaced” in a definition means that the collection
of objects satisfying the definition is unchanged if the original condition is
replaced with the new condition.

Soln: Direct Proof: Let v € V. Then

0=0v
=1+ (=D)v
=1lv+(-1)v
=v+(-1v.

This (—1)v is an additive inverse of v. Hence the additive inverse condition is indirectly
satisfied by the condition we replaced it with.

O

6. Suppose S is a nonempty set. Let VS denote the set of functions from S to V. Define a
natural addition and scalar multiplication on V5, and show that VS is a vector space with
these definitions.

Soln: For f,g € V5, x € S,and A € F, let f + g and Af be the operations defined by

(f+8)(x) = f(x) +g(x) and (1f)(x) =Af(x).

the additive identity of V* is the function from S to V that is identically 0, and the
additive inverse of f € V¥ is the function from S to V such that x — —f(x).

O

10
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3 Subspaces

Definition 3.1. Conditions of a Subspace A subset U C V is a subspace of V if, and only if, U
satisfies the following properties.

* additive identity
0eU.

e closed under addition
uwel = u+weW.

* closed under scalar multiplication

ace FanduelU = aucecl.

11
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1. For each of the following subsets of F3, determine whether or not they are a subspace of
F3.
(@) W ={(x1,x2,x3) € F3: x| + 2x2 + 3x3 = 0}
(b) W ={(x1,x2,x3) € F? : x1 +2x9 + 3x3 = 4}
(© W = {(x1,x2,x3) € F? : x1x9x3 = 0}
(d) W = {(x1,x2,x3) € F? : x1 = bx3}

Soln: We will check each W to see if they satisfy the criteria for a subspace as defined
in 3.1.

(@) W ={(x1,x2,x3) € F3: x1 +2x2 + 3x3 = 0}

Additive Identity: W = {(x1,x2,x3) € F3 : x1 + 2x2 + 3x3 = 0} contains the
additive identity, since (0, 0, 0) satisfies x; + 2xo + 3x3 = 0.

) q
Closed Under Addition: Suppose u = (x1,x2,x3) € Wandv = (y1,y2,y3) € W,
where each satisfy x1 + 2x2 + 3x3 = 0 and y; + 2y2 + 3y3 = 0. Then:

(x1+y1) +2(x2 + y2) + 3(x3 + y3) = (x1 + 2x2 + 3x3) + (y1 + 2y2 + 3y3) = 0.

Hence, the subset is closed under addition.
) (
Closed Under Scalar Mult.: Let u = (x1,x2,x3) € W and ¢ € F. Then:

c(x1+2x9 +3x3) =c(0) =0.
) {

Therefore, cu € W. We conclude that this W is a subspace of F3.

O

(b) W = {(x1,x2,x3) € F3: x| + 2x9 + 3x3 = 4}.

Additive Identity: The subset W = {(x1,x2,x3) € F? : x| + 2xo + 3x3 = 4}
does not contain the additive identity, since the zero vector does not satisfy
X1+ 2x9 + 3x3 = 4:

0+2(0)+3(0) # 4.

Therefore, the subset is not a subspace of F3.

O
(c) TODO
(d) TODO

12
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2. Show that the set of differentiable real-valued functions f on the interval (—4, 4) such that
f'(=1) = 3f(2) is a subspace of R(-44).

Soln: Let S be the set of differentiable real-valued functions on the interval (-4, 4)
such that f’(—1) = 3f(2). We will check the subspace criteria (3.1) one-by-one.

) {
Additive Identity: For the zero function, f(x) = 0, we have f’(x) = 0 for all x,
including f’(-1)=0, and f(2) = 0. Thus, f’'(-1) = 0 = 3f(2), so the zero function
satisfies the condition f’(—1) = 3f(2), and therefore, S contains the zero function;
f(x)=0¢€S.

) {
Closed Under Addition: Let f,g € S, e.g., f/(—1) =3f(2) and g'(—-1) = 3g(2). We
need to show that (f + g) € S, meaning (f +g)’(—1) = 3(f + g)(2).

By the linearity of differentiation, we have:

(f+8) (=) =f(=D+g(-1)

and
(f+8)(2) =f(2)+g(2).
Using the fact that f'(—1) = 3f(2) and g’(—1) = 3g(2), we get:

(f+8) (=) =f (=1 +g'(-1) =3f(2) +38(2) =3(f(2) +g(2)) =3(f +8)(2).

Thus, (f +g)'(-1) = 3(f + g)(2), which shows that (f + g) € S.

) {
Closed Under Scalar Mult.: Let f € S and ¢ € R. We want to show that (c¢f) €
S, meaning (cf)’ (-1) = 3(cf)(2). By the linearity of differentiation and scalar
multiplication, we have:

(cf)=1L=cf'(-1)
and
() (2)cf(2).
Using the face that f/(—1) = 3f(2), we get:

(f) (=1) = cf (=1) = ¢ - 3f(2) = 3(c(2)).

Thus, (cf)’(-1) = 3(cf)(2), which shows that cf € S.
) {
The set S of differentiable real-valued functions f on the interval (-4, 4), with f'(-1) =
3f(2), satisfies all the criteria of a subspace of R(-4%).

O
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3. (@) Is{(a,b,c)eR3:a®=0b%}a subspace of R3?
(b) Is {(a, b, c) € C?: a® = b3} a subspace of C3?

Soln:

(a) Let S = {(a,b,c) € R3 : a® = b3}. For S to be a subspace of R? it must satisfy
the properties listed in 3.1.
Additive Identity: The additive identity (zero function) (0,0, 0) exists in S,
because it satisfies the equation

ad=b = 03=0°
) {
Closed Under Addition: Let o = (al,bl,cl) € Sand B = (ClQ,bQ,CQ) € S.
These vectors satisfy the condition that:
ai=b3 and al=b3. (7)

The definition of addition on S gives us

ai +as
a +ﬁ = bl + b2 .
c1+cCo
The condition for @ + 8 € S is:
(a1 +as)® = (b1 + ba)°. (8)

Now, let’s check whether the equation (a; + a)® = (b1 + bs)? holds in general.
Expanding both sides using the binomial theorem:

(a1 +as)® = a3 + 3a’as + 3ara3 + as,

and
(b1 + b2)3 =b3+ 3b2b2 + 3191192 + b3,
1 1 2 2

For the sum « + f to satisfy (8), we need:
at +3ajay + 3a1as + ay = b3 + 3biby + 3b1b5 + b.

However, we only know that a$ = b3 and a3 = b3; we know nothing about the
remaining terms. Thus in general, and ignoring special cases where the other
terms are 0,
(a1 + 02)3 # (b1 + b2)3.

) q
Since (a1 + az)3 # (b1 + by)? in general, the sum of two vectors in S does not
necessarily belong to S. Thus, S is not closed under addition, and S is not a
subspace of R3.

O
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4. Prove or give a counterexample: If U is a nonempty subset of R? such that U is closed
under addition and under taking additive inverses (meaning —u € U whenever u € U), then
U is a subspace of R?.

Soln: Let U be a nonempty subset of R? such that it satisfies the properties listed
above. The missing property we need to show for U is being closed under scalar
multiplication. Consider ¢ = -1 € R. If u € U, then —u € U by the assumption that
U is closed under taking additive inverses. So scalar multiplication by —1 is already
implied by this property.

However, consider the example:
UcR?={(x,y) eR?:x,y€Z}.

This U is not closed under scalar multiplication. For example, if u = (1,0) € U and
we multiply by a scalar r = % € R, we get:

(1,0)

Il
—_
DO | =
@]
N —

1
2
which is not in U, since % ¢ 7.

Thus, U is not a subspace of R2, even though it is closed under addition and ad-
ditive inverses, because it fails to satisfy the property of being closed under scalar
multiplication.

O

5. Give an example of a nonempty subset U of R? such that U is closed under scalar multi-
plication, but U is not a subspace of R2,

6. A function f : R — R is called periodic if there exists a positive number p such that
f(x) = f(x+ p) for all x € R. Is the set of periodic functions from R to R a subspace of
R®? Explain.

7. Suppose V; and V5 are subspaces of V. Prove that the intersection V1 N V5 is a subspace of
V.

8. Prove that the intersection of every collection of subspaces of V is a subspace of V.

9. Prove that the union of two subspaces of V is a subspace of V if, and only if, one of the
subspaces is contained in the other

10. Suppose
U={(x,-x,2x) e F>:x e F} and W ={(x,x,2x) € F?:x € F}.

15
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11.
12.

13.

14.

Describe U + W using symbols, and give a description of U + W that uses no symbols.
Suppose U is a subspace of V. Whatis U + U?

Prove or give a counterexample: If Vi, V, U are subspaces of V such that
V1+U=V2+U, (9)
then V; = V5.

Suppose
U={(x,x,y,y) € F':x,y € F}. (10)

Find a subspace W of F* such that F* = U @ W. Where & denotes a direct sum.

A function f : R — R is called even if

f(=x) = f(x) (11)
for all x € R. A function f : R — Ris called odd if
f(=x) =-f(x) (12)

for all x € R. Let V, denote the set of real-valued even functions on R and let V,, denote
the set of real-valued odd functions on R. Show that RR =V, @ V,.

16
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