Abstract Linear Algebra

Problem Set 1

Anon

September 8, 2024

1 The Complex Field C

Definition 1.1. *The Complex Field: A complex number is an ordered pair* (a, b) **, where** $a, b \in \mathbb{R}$, and in which they are written as $a + bi$, where $i = \sqrt{-1}$. The set of all complex *numbers is denoted by* C*:*

$$
\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.
$$

Definition 1.2. *Arithmetic on* C*:*

Addition on C *is defined by*

$$
(a+bi) + (c+di) = (a+c) + (b+d)i.
$$
 (1)

Multiplication on C *is defined by*

$$
(a+bi)(c+di) = (ac-bd) + (ad+bc)i.
$$
 (2)

1. Show that $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in \mathbb{C}$.

Soln: Direct Proof: Let $\alpha, \beta \in \mathbb{C}$.

 $\alpha = a + bi$ and $\beta = c + di$,

where $a, b, c, d \in \mathbb{R}$. We recall that addition on \mathbb{C} [\(1.2\)](#page-1-0) is defined as:

$$
\alpha + \beta = (a + bi) + (c + di)
$$

= $(a + c) + (b + d)i$.

$$
\beta + \alpha = (c + di) + (a + bi),
$$

= $(c + a) + (d + b)i$.

Since $a, b, c, d \in \mathbb{R}$, and addition is *commutative* in \mathbb{R} , we can write

$$
(a + c) + (b + d)i = (c + a) + (d + b)i,
$$

and thus, $\alpha + \beta = \beta + \alpha$.

2. Show that for every $\alpha \in \mathbb{C}$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha + \beta = 0$.

Soln: Proof By Contradiction: Assume there exists two distinct values $\beta_1, \beta_2 \in \mathbb{C}$ such that

$$
\alpha + \beta_1 = 0
$$
 and $\alpha + \beta_2 = 0$.

We can subtract the equations from each other,

$$
(\alpha + \beta_1) - (\alpha + \beta_2) = 0 - 0,
$$

which when simplifying, yields

$$
\beta_1-\beta_2=0.
$$

This leads to a contradiction, since it implies that $\beta_1 = \beta_2$. Therefore, the β value such that $\forall \alpha \in \mathbb{C} : \alpha + \beta = 0$ must be unique.

□

3. Show that for every $\alpha \in \mathbb{C}$ with $\alpha \neq 0$, there exists a unique $\beta \in \mathbb{C}$ such that $\alpha \beta = 1$.

Soln: Proof By Contradiction: Assume there exists two distinct values $\beta_1, \beta_2 \in \mathbb{C}$ such that

$$
\alpha\beta_1 = 1
$$
 and $\alpha\beta_2 = 1$.

Then, subtract the two equations

$$
\alpha \beta_1 - \alpha \beta_2 = 1 - 1
$$

$$
\alpha (\beta_1 - \beta_2) = 0.
$$

Since we have $\alpha \neq 0$, we can divide both sides by α , yielding

$$
\beta_1-\beta_2=0.
$$

This implies $\beta_1 = \beta_2$, which gives rise to a contradiction. Therefore, the β value such that $\forall \alpha \in \mathbb{C} : \alpha \beta = 1$ must be unique.

4. Show that

$$
\frac{-1 + \sqrt{3}i}{2}
$$

is a cube root of 1 (meaning that its cube equals 1).

Soln: Direct Proof: Let $z = \frac{-1 + \sqrt{3}i}{2}$ $\frac{1+\sqrt{3}i}{2}$. From [1.2,](#page-1-0) we know that multiplication on $\mathbb C$ is defined as

$$
\alpha\beta = (a+bi)(c+di) = (ac-bd) + (ad+bc)i;
$$

where $\alpha = a + bi, \beta = c + di$, and $a, b, c, d \in \mathbb{R}$. Note that, when multiplying z by itself, $a = c$ and $d = b$. For z, we have $a = c = -\frac{1}{2}$ $\frac{1}{2}$, and $b = d = \frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2}$. We'll start by computing z^2 , and then compute $(z^2)(z)$.

$$
z^{2} = (ac - bd) + (ad + bc)i
$$

= $\left(\left(-\frac{1}{2} \right)^{2} - \left(\frac{\sqrt{3}}{2} \right)^{2} \right) + \left(\left(-\frac{1}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left(\frac{\sqrt{3}}{2} \cdot \frac{-1}{2} \right) \right) i$
= $\left(\frac{1}{4} - \frac{3}{4} \right) + \left(-\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{4} \right) i$
= $-\frac{1}{2} - \frac{\sqrt{3}i}{2}$
= $\frac{-1 - \sqrt{3}i}{2}$

Now we take z^2 from above and compute the product $z^3 = z^2z$, with care to use the right a, b, c and d values:

$$
z^{3} = \left(\left(-\frac{1}{2} \right)^{2} - \left(-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right) + \left(\left(-\frac{1}{2} \cdot \frac{\sqrt{3}}{2} \right) + \left(-\frac{\sqrt{3}}{2} \cdot \frac{-1}{2} \right) \right)
$$

= $\left(\frac{1}{4} + \frac{3}{4} \right) + \left(-\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} \right)$
= 1 + 0
= 1.

Abstract Linear Algebra Section 1A

5. Find two distinct square roots of i .

Soln: TODO:

6. Explain why there does not exist $\lambda \in \mathbb{C}$ such that

$$
\lambda(2-3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i).
$$

Soln: Proof by Contradiction: Assume $\exists \lambda \in \mathbb{C}$ such that

$$
\lambda \begin{pmatrix} 2-3i \\ 5+4i \\ -6+7i \end{pmatrix} = \begin{pmatrix} 12-5i \\ 7+22i \\ -32-9i \end{pmatrix}.
$$

If such a λ exists, then it must satisfy the following system of complex equations:

$$
\begin{cases}\n\lambda(2-3i) &= 12-5i \\
\lambda(5+4i) &= 7+22i \\
\lambda(-6+7i) &= -32-9i\n\end{cases}
$$

We can solve for λ from the first equation,

$$
\lambda(2-3i) = 12 - 5i
$$

$$
\lambda = \frac{12 - 5i}{2 - 3i}
$$

$$
\lambda = 3 + 2i,
$$

and check if it satisfies the second equation:

$$
(3+2i)(5+4i) = 15 + 12i + 10i - 8
$$

= 7 + 22i.

Thus, this λ satisfies the first two equations. Lastly, we check the third:

$$
(3+2i)(-6+7i) = -18 + 21i - 12i - 14
$$

$$
= -32 + 9i \neq -32 - 9i
$$

and arrive at a contradiction. We conclude that no single $\lambda \in \mathbb{C}$ can satisfy all three equations simultaneously.

2 Vector Spaces

Definition 2.1. A vector space V over a field F is a set along with an addition and a scalar *multiplication*

 $+: V \times V \rightarrow V$ and $\cdot: F \times V \rightarrow V$

such that the following properties hold:

- *Commutativity*: $u + v = v + u$ for all $u, v \in V$.
- **Associativity**: $(u + v) + w = u + (v + w)$ and $a(bv) = (ab)v$ for all $u, v, w \in V$ and all $a, b \in F$.
- *Additive Inverse: For every* $v \in V$ *, there exists* $-v \in V$ *such that* $v + (-v) = 0$ *.*
- *Additive Identity: There exists* $0 \in V$ *such that* $v + 0 = v$ *for all* $v \in V$ *.*
- *Multiplicative Identity: There exists* $1 \in V$ such that $1v = v$ for all $v \in V$.
- *Distributive Properties*: $a(u + v) = au + av$ and $(a + b)v = av + bv$ for all $a, b \in F$ and *all* $u, v \in V$.

Theorem 2.2. *Any subspace of a vector space is a vector space.*

1. Prove that $-(-v) = v$ for every $v \in V$ (where V is a vector space).

Soln: By definition of a vector space (2.1) , the additive inverse $-v$ of $v \in V$ satisfies:

$$
v + (-v) = 0.\t\t(3)
$$

Considering the element $-(-v)$, which is the additive inverse of $-v$, and by the properties of the additive inverse, we have:

$$
(-v) + (-(-v)) = 0.
$$
 (4)

From (Eq. [3\)](#page-6-1), we know that $v + (-v) = 0$. Let's add v to both sides of (Eq. [4\)](#page-7-0):

$$
v + ((-v) + (-(-v))) = v + 0.
$$

By the property of the additive identity $v + 0 = v$. Since addition on V is associative, we can rewrite the left-hand side:

$$
(v + (-v)) + (-(-v)) = v.
$$

From $v + (-v) = 0$, we get:

$$
0 + (-(-v)) = v
$$

$$
-(-v) = v.
$$

Thus, for every $v \in V$, we have $-(-v) = v$.

2. Suppose $a \in F$, $v \in V$, and $av = 0$. Prove that $a = 0$ or $v = 0$.

Soln: If $a = 0$, the equation $av = 0$ is trivially true for any $v \in V$. Assume $a \neq 0$ and that $av = 0$ for some $v \in V$. Since $a \in F$ and $a \neq 0$, the field F guarantees the existing of an inverse a^{-1} such that $a^{-1}a = 1$. Using this, we multiply both sides of the equation $av = 0$ by a^{-1} :

$$
a^{-1}(av) = a^{-1} \cdot 0.
$$

By the associativity of scalar multiplication on V , we have:

$$
(a^{-1}a)v=0,
$$

and since $a^{-1}a = 1$, this simplifies to:

$$
1\cdot v=0.
$$

The scalar 1 is the multiplicative identity in the field F, so $1 \cdot v = v$. Therefore, the equation becomes:

 $v = 0$.

Thus, if $a \neq 0$, we have shown that $v = 0$. Therefore, either $a = 0$ or $v = 0$.

Abstract Linear Algebra Section 1B

3. Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that $v + 3x = w$.

Soln: Existence: To prove existence of x, we can use the axioms of vector spaces (2.1) , particularly, the properties of scalar multiplication and additive inverses. Subtract ν from both sides of the equation:

$$
(v+3x) - v = w - v
$$

$$
3x = w - v.
$$
 (5)

Since $3 \in F$ is a non-zero scalar and F, the field over which the vector space is defined, has multiplicative inverses for non-zero elements, there exists $\frac{1}{3} \in F$:

$$
x=\frac{1}{3}(w-v).
$$

Thus, we have proven the existence of an $x \in V$ that satisfies $v + 3x = w$.

Uniqueness: Suppose there are two values $x_1, x_2 \in V$ such that they satisfy

$$
v + 3x_1 = w \quad \text{and} \quad v + 3x_2 = w.
$$

Combining the two equations, we have:

$$
(v + 3x1) - (v + 3x2) = w - w
$$

3x₁ - 3x₂ = 0. (6)

We can factor out the scalar 3,

 $3(x_1 - x_2) = 0$,

which implies $x_1 - x_2 = 0$, and in turn, $x_1 = x_2$. Therefore x is unique.

4. The empty set is not a vector space. The empty set fails to satisfy only one of the requirements listed in the definition of a vector space (1.20). Which one?

Soln: The **additive identity** axiom in (1.20) begins "*there exists an element* $0 \in V...$ ". However, the empty set ∅ **does not contain any elements**. Therefore it fails to satisfy this axiom.

□

5. Show that in the definition of a vector space (1.20), the additive inverse condition can be replaced with the condition that

$$
\forall v \in V : 0v = 0.
$$

The phrase a "condition can be replaced" in a definition means that the collection of objects satisfying the definition is unchanged if the original condition is replaced with the new condition.

Soln: Direct Proof: Let $v \in V$. Then

 $0 = 0v$ $= (1 + (-1))v$ $= 1v + (-1)v$ $= v + (-1)v$.

This $(-1)v$ is an additive inverse of v. Hence the additive inverse condition is indirectly satisfied by the condition we replaced it with.

□

6. Suppose S is a nonempty set. Let V^S denote the set of functions from S to V. Define a natural addition and scalar multiplication on V^S , and show that V^S is a vector space with these definitions.

Soln: For $f, g \in V^S$, $x \in S$, and $\lambda \in F$, let $f + g$ and λf be the operations defined by

$$
(f+g)(x) = f(x) + g(x)
$$
 and $(\lambda f)(x) = \lambda f(x)$.

the additive identity of V^S is the function from S to V that is identically 0, and the additive inverse of $f \in V^S$ is the function from S to V such that $x \mapsto -f(x)$.

3 Subspaces

Definition 3.1. *Conditions of a Subspace* A subset $U \subset V$ is a subspace of V if, and only if, U *satisfies the following properties.*

• *additive identity*

 $0 \in U$.

• *closed under addition*

 $u, w \in U \implies u + w \in W$.

• *closed under scalar multiplication*

 $a \in F$ and $u \in U \implies au \in U$.

1. For each of the following subsets of F^3 , determine whether or not they are a subspace of F^3 .

(a) $W = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 0\}$ (b) $W = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 4\}$ (c) $W = \{(x_1, x_2, x_3) \in F^3 : x_1x_2x_3 = 0\}$ (d) $W = \{(x_1, x_2, x_3) \in F^3 : x_1 = 5x_3\}$

Soln: We will check each *W* to see if they satisfy the criteria for a subspace as defined in [3.1.](#page-11-0)

(a) $W = \{ (x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 0 \}.$

Additive Identity: $W = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 0\}$ contains the *additive identity*, since $(0, 0, 0)$ satisfies $x_1 + 2x_2 + 3x_3 = 0$.

Closed Under Addition: Suppose $u = (x_1, x_2, x_3) \in W$ and $v = (y_1, y_2, y_3) \in W$, where each satisfy $x_1 + 2x_2 + 3x_3 = 0$ and $y_1 + 2y_2 + 3y_3 = 0$. Then:

$$
(x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3) = (x_1 + 2x_2 + 3x_3) + (y_1 + 2y_2 + 3y_3) = 0.
$$

Hence, the subset is closed under addition.

Closed Under Scalar Mult.: Let $u = (x_1, x_2, x_3) \in W$ and $c \in F$. Then:

 $c(x_1 + 2x_2 + 3x_3) = c(0) = 0.$

Therefore, $cu \in W$. We conclude that this W is a subspace of F^3 .

□

(b) $W = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 4\}.$

Additive Identity: The subset $W = \{(x_1, x_2, x_3) \in F^3 : x_1 + 2x_2 + 3x_3 = 4\}$ **does not** contain the additive identity, since the zero vector does not satisfy $x_1 + 2x_2 + 3x_3 = 4$:

$$
0 + 2(0) + 3(0) \neq 4.
$$

Therefore, the subset **is not a subspace** of F^3 .

□

(c) **TODO**

(d) **TODO**

2. Show that the set of differentiable real-valued functions f on the interval $(-4, 4)$ such that $f'(-1) = 3f(2)$ is a subspace of $\mathbb{R}^{(-4,4)}$.

Soln: Let S be the set of differentiable real-valued functions on the interval $(-4, 4)$ such that $f'(-1) = 3f(2)$. We will check the subspace criteria [\(3.1\)](#page-11-0) one-by-one.

Additive Identity: For the zero function, $f(x) = 0$, we have $f'(x) = 0$ for all x, including $f'(-1)=0$, and $f(2) = 0$. Thus, $f'(-1) = 0 = 3f(2)$, so the zero function satisfies the condition $f'(-1) = 3f(2)$, and therefore, S contains the zero function; $f(x) = 0 \in S$.

Closed Under Addition: Let *f*, *g* ∈ *S*, e.g., $f'(-1) = 3f(2)$ and $g'(-1) = 3g(2)$. We need to show that $(f + g) ∈ S$, meaning $(f + g)'(-1) = 3(f + g)(2)$.

By the linearity of differentiation, we have:

$$
(f+g)'(-1) = f'(-1) + g'(-1)
$$

and

 \mathbf{r}

$$
(f+g)(2) = f(2) + g(2).
$$

Using the fact that $f'(-1) = 3f(2)$ and $g'(-1) = 3g(2)$, we get:

$$
(f+g)'(-1) = f'(-1) + g'(-1) = 3f(2) + 3g(2) = 3(f(2) + g(2)) = 3(f+g)(2).
$$

Thus, $(f + g)'(-1) = 3(f + g)(2)$, which shows that $(f + g) \in S$.

Closed Under Scalar Mult.: Let $f \in S$ and $c \in R$. We want to show that $(cf) \in$ S, meaning $(cf)'(-1) = 3(cf)(2)$. By the linearity of differentiation and scalar multiplication, we have:

$$
(cf)'-1 = cf'(-1)
$$

and

 $(c f)(2) c f(2)$.

Using the face that $f'(-1) = 3f(2)$, we get:

$$
(cf)'(-1) = cf'(-1) = c \cdot 3f(2) = 3(cf(2)).
$$

Thus, $(cf)'(-1) = 3(cf)(2)$, which shows that $cf \in S$.

The set S of differentiable real-valued functions f on the interval $(-4, 4)$, with $f'(-1) =$ 3 *f*(2), satisfies all the criteria of a subspace of $\mathbb{R}^{(-4,4)}$.

 \Box

3. (a) Is $\{(a, b, c) \in \mathbb{R}^3 : a^3 = b^3\}$ a subspace of \mathbb{R}^3 ? (b) Is $\{(a, b, c) \in \mathbb{C}^3 : a^3 = b^3\}$ a subspace of \mathbb{C}^3 ?

Soln:

(a) Let $S = \{(a, b, c) \in \mathbb{R}^3 : a^3 = b^3\}$. For S to be a subspace of \mathbb{R}^3 it must satisfy the properties listed in [3.1.](#page-11-0)

Additive Identity: The additive identity (zero function) $(0, 0, 0)$ exists in S , because it satisfies the equation

$$
a^3 = b^3 \implies 0^3 = 0^3.
$$

Closed Under Addition: Let $\alpha = (a_1, b_1, c_1) \in S$ and $\beta = (a_2, b_2, c_2) \in S$. These vectors satisfy the condition that:

$$
a_1^3 = b_1^3 \quad \text{and} \quad a_2^3 = b_2^3. \tag{7}
$$

The definition of addition on S gives us

$$
\alpha + \beta = \begin{pmatrix} a_1 + a_2 \\ b_1 + b_2 \\ c_1 + c_2 \end{pmatrix}.
$$

The condition for $\alpha + \beta \in S$ is:

$$
(a_1 + a_2)^3 = (b_1 + b_2)^3.
$$
 (8)

Now, let's check whether the equation $(a_1 + a_2)^3 = (b_1 + b_2)^3$ holds in general. Expanding both sides using the binomial theorem:

$$
(a_1 + a_2)^3 = a_1^3 + 3a_1^2a_2 + 3a_1a_2^2 + a_2^3,
$$

and

$$
(b_1 + b_2)^3 = b_1^3 + 3b_1^2b_2 + 3b_1b_2^2 + b_2^3.
$$

For the sum $\alpha + \beta$ to satisfy [\(8\)](#page-14-0), we need:

$$
a_1^3 + 3a_1^2a_2 + 3a_1a_2^2 + a_2^3 = b_1^3 + 3b_1^2b_2 + 3b_1b_2^2 + b_2^3.
$$

However, we only know that a_1^3 $_1^3 = b_1^3$ $_1^3$ and a_2^3 $_2^3 = b_2^3$ 2^3 ; we know nothing about the remaining terms. Thus in general, and ignoring special cases where the other terms are 0,

$$
(a_1 + a_2)^3 \neq (b_1 + b_2)^3.
$$

Since $(a_1 + a_2)^3 \neq (b_1 + b_2)^3$ in general, the sum of two vectors in S does not necessarily belong to S . Thus, S is **not closed under addition**, and S is **not a subspace** of \mathbb{R}^3 .

4. Prove or give a counterexample: If U is a nonempty subset of \mathbb{R}^2 such that U is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), then U is a subspace of \mathbb{R}^2 .

Soln: Let U be a nonempty subset of \mathbb{R}^2 such that it satisfies the properties listed above. The missing property we need to show for U is being closed under scalar multiplication. Consider $c = -1 \in \mathbb{R}$. If $u \in U$, then $-u \in U$ by the assumption that U is closed under taking additive inverses. So scalar multiplication by -1 is already implied by this property.

However, consider the example:

$$
U \subset \mathbb{R}^2 = \{ (x, y) \in \mathbb{R}^2 : x, y \in \mathbb{Z} \}.
$$

This *U* is **not closed under scalar multiplication**. For example, if $u = (1, 0) \in U$ and we multiply by a scalar $r = \frac{1}{2}$ $\frac{1}{2} \in \mathbb{R}$, we get:

$$
\frac{1}{2}\left(1,0\right) = \left(\frac{1}{2},0\right),\
$$

which is not in U, since $\frac{1}{2} \notin \mathbb{Z}$.

Thus, U is **not a subspace** of \mathbb{R}^2 , even though it is closed under addition and additive inverses, because it fails to satisfy the property of being closed under scalar multiplication.

- 5. Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .
- 6. A function $f : \mathbb{R} \to \mathbb{R}$ is called *periodic* if there exists a positive number p such that $f(x) = f(x + p)$ for all $x \in \mathbb{R}$. Is the set of periodic functions from \mathbb{R} to \mathbb{R} a subspace of $\mathbb{R}^{\mathbb{R}}$? Explain.
- 7. Suppose V_1 and V_2 are subspaces of V. Prove that the intersection $V_1 \cap V_2$ is a subspace of V_{\cdot}
- 8. Prove that the intersection of every collection of subspaces of V is a subspace of V .
- 9. Prove that the union of two subspaces of V is a subspace of V if, and only if, one of the subspaces is contained in the other
- 10. Suppose

$$
U = \{(x, -x, 2x) \in F^3 : x \in F\} \text{ and } W = \{(x, x, 2x) \in F^3 : x \in F\}.
$$

Describe $U + W$ using symbols, and give a description of $U + W$ that uses no symbols.

- 11. Suppose U is a subspace of V. What is $U + U$?
- 12. Prove or give a counterexample: If V_1 , V_2 , U are subspaces of V such that

$$
V_1 + U = V_2 + U,\t\t(9)
$$

then $V_1 = V_2$.

13. Suppose

$$
U = \{(x, x, y, y) \in F^4 : x, y \in F\}.
$$
 (10)

Find a subspace W of F^4 such that $F^4 = U \oplus W$. Where \oplus denotes a *direct sum*.

14. A function $f : \mathbb{R} \to \mathbb{R}$ is called *even* if

$$
f(-x) = f(x) \tag{11}
$$

for all $x \in \mathbb{R}$. A function $f : \mathbb{R} \to \mathbb{R}$ is called *odd* if

$$
f(-x) = -f(x) \tag{12}
$$

for all $x \in \mathbb{R}$. Let V_e denote the set of real-valued even functions on \mathbb{R} and let V_o denote the set of real-valued odd functions on R. Show that $\mathbb{R}^{\mathbb{R}} = V_e \oplus V_o$.